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An analpis of the relative frequency of occurrence of any given
slip-line angle in a plastically deformed polycrystal composed of face-
centered cubic crystals is presented for the c=e of simple tension.
The results are compared with those obtained for a polycrystal com-
posed of crystals which have but a single mode of slip and with experi-
mental results. The comparisons show that the differences between the
results obtained by the two theories become greater as the stress is
increased. The comparison of the face-centered cubic theory with

. experiment is somewhat better than that of the single-slip-mode theory,
but the errors are appreciable.

INTRODWTION

The frequency distribution of the angular orientation of SUP
lines that are observed within sepsrate grains on the surface of a
plastically deformed polycrystal depends upn the detailed mechanism
of plastic deformation. In reference 1 an attempt was made to assess
quantitatively the assumptions on which the slip theory of plasticity
(ref. 2) is based by investigating the implications of this theory
concerning this frequency distribution. This assessment was made by
comparing an experimental distribution with theoretical distributions
calculated on the basis of the ssme model as that used in formulating
the stress-strain laws of the slip theory. Although good agreement
was obtained with regard to the shape of the distributions, the com-
parison between the experimental maximum slip angle and that predicted
by theory was poor. One of the possible reasons for this poor com-
parison, as reported in reference 1, was the fact that the theory was
based on a polycrystalline aggregate of grains which possess only one
mode of slip; whereas aluminm, the metal used in the experiment, is
made up of face-centered cubic crystals which have 12 modes of slip.

.

In order.to investi~te the quantitative effect of the multimode

9 property of face-centeredcubic crystals on the slip-angle distribution
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an investigationwas performed wherein this distribution was derived
on the basis of the same assumptions as those used in reference 1
except that the grains were assumed to be iice-centered cubic crystals
instead of the single-slipmode type. The theoretical derivations
and the results of the investigation are presented herein.
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SYMBOLS

cumulative probability of slipped grain having slip angle
less than f3

probability density of slipped grains having slip angle of e

indicial cwnulative probability

indicial probability density

weighting function (see eq. (7))

slip angle

maximum slip angle

coordinates specifying orientation of slip-plane+irection
combination with respect to specimen axis and viewing
plane (see fig. 3)

coordinate axes

tensile stress

lowest value of

(see fig. 3)

tensile stress to cause slip

stress ratio, (#aL

resolved shear stress

limit shear stress

THE

The structure and

FACE-CENTERED

distortion of

CUBIC CRYSTAL

the face-centered cubic crystal .

have been fully discussed in the literature (see, for example, refs. 3

.—

—

a

to 5). For convenience, however, some of the characteristics of single
crystals are given here.

*
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b Figure 1 indicates the basic slip systems of the crystal. In
terms of the Miller indices (which are merely sets of direction nwn-
bers referred to the edges of the cube), the normals to the planes of

.
slip are of’the form {111} (i.e. (111), (111), (UT), etc.) and the

slip directions in the plane are of the form QIO> (i.e. [110], ~TO],

[lOiJ, etc.). The octahedral planes therefore are the slip planes and
the face diagonals are the slip directions. The regular tetrahedron
shown inscribed in the cube contains the slip planes as faces and the
slip directions as edges. Four slip planes and three slip directions
in each plane produce a total of U possible plane-direction combina-
tions or slip systems.

If a tensile stress u is applied to a single crystal specimen
along the specimen axis the resulting resolved shear stress on any
particular slip system is given by

T =GCOSACOS8 (1)

where A and 5 are the angles between the spectien axis and,
. respectively, the normal to the slip plane and the slip direction.

This shear stress is, in general, different for each slip system in
the cr~tal. The particular slip system for which T has a maximm

* magnitude is, of course, dependent on the orientation of the crystal
and can be found by comparing the shears on the various slip systems.
The stereographic projection of the crystal shown in figure 2 s~ Izes
the information obtained in reference 5 by such a comparison. The “
crystal is presumed to be fixed and the orientation of the crystal with
respect to the loading direction is specified by the position of the
specimen axis on the stereographic projection. The projection shows
the orientation of the slip planes (of the form {111} , indicatedby
the symbol A) and the slip directions (of the form <ll(D, indicated
by the symbol O) with respect to the orientation of the cube edges
(of the form ~OO>, indicated by the symbol ~). The great-circle
arcs connecting the various directions divide the hemisphere into
24 equal triangular regions. The set of indices within each region
expresses the particular slip plane (upper indices) and slip direction
(lower indices) most highly loaded if the specimen axis falls within
that region. Since the resolved shear stress required to cause slip
along any given slip system of a virgin cr~tal is independent of the
orientation of the slip system, the sets of indices also denote the
particular slip system which will initially undergo slip. (An excep-
tion to this statement is noted in ref. 6 wherein the required resolved

. shear stress is found to be different for different slip systems in a
thin, plate-like crystal.) As the crystal is loaded further in tension
the same slip system will continue to undergo slip provided the crystal-

* lographic orientation remains essentially unchanged with respect to the
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loading direction; the other systems will remain dormant because, as
has been shown experimentally, the dormant slip systems are strain-
hardened to at least the same extent as the operative ones. (See
ref. 3, p. 304. )

THEORY —

In the derivation a polycrystalline specimen is considered to be
plastically strained in tension. The grains, which are so oriented
that the resolved shear stress on the most highly loaded slip-plane-
direction combination is sufficiently great, exhibit slip along the
slip plane which is evidenced in the form of slip lines on the surface

.

of the specimen. If the specimen axis is vertical, the slip lines are —

inclined to the horizontal at various angles known as slip angles. As
in reference 1 the objective is the calculation of the relative freqtincy ‘- “-’
of occurrence of slipped grains with various slip angles.

The desired result can be expressed, in one way, as a cumulative
probability, that is, as the relative number of slipped grains havi~g
slip angles less than a given value. This cumulative probability N(6) .
can be found conceptually by counting the Slipped grains with slip
angles less than e and dividing by the total number of slipped grains.
Another way to express the desired result is as a frequency distril)u- a
tion or probability density, that is, as the relative density of slipped

..

grains with a given slip angle. The pro~ability density S(e) is
.—

found to be equal to the derivative of N(6) with respect to El. Both
of these quantities are derived herein.

—

The following assumptions, which with the exception of assmnption 2
are common to those used in reference 1, are used in the derivation:

(1) The crystallographic orientation of the grains in the specden
is random.

(2) The specimen is composed of face-centered cubic crystals.

(3) TJmmicroscopic stress state in each grain in the same as the
macroscopic stress on the specimen as a whole.

(4) A grain slips when the resolved shear stress in the slip direc-
tion in the slip plane is greater than a certain limiting value, herein
called the limit shear stress, which is the same for all grains.

.

The model thus consists of a specimen composed of a very large
.

number of randomly oriented grains of identical crystallographic pro-
perties subjected to a common tensile stress in the direction of the *
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specimen axis. In the determination of-the slip-angle distribution, the
following questions must be answered for each particular grain:

(1) Which is the most highly loaded slip system?

(2) Does this system undergo slip? In other words, is the resolved
shear stress greater than the limit shear stress?

(3) If slip occurs, what is the slip angle produced?

With these questions answered for each grain the relative frequency of
occurrence of slipped grains with the various slip angles can be deter-
mined. Now, the concept of having many randomly oriented grains can be
replaced by the concept of having a single grain which is allowed to
assme randomly all orientations; each different orientation represents
a different grain. Furthermore, since the )2 slip systems are crystal-
lographically equivalent, attention can be directed to only those
orientations for which a particular slip system (say-the (111/OTl) sys-
tem) would be most highly loaded. If the orientation is such that
another slip system is most highly loaded, &he basic tetrahedron of
figure 1 can be rotated to bring the (111/011) system into coincidence
with this most highly loaded system and this new orientation will be
crystallographically the same as the old. By means of this artificial
restriction of the orientation the first question is automatically
answered and only the second and third questions need to be answered.

In order to answer these questions, the orientation of each crystal
with respect to both the specimen axis snd the viewing plane must be
specified. One method of specification was used in reference 1 wherein
the specimen axis snd viewing plane were fixed and the orientation of
the grain was allowed to vary. A better method for the purposes of
this analysis would be to hold the grain fixed and allow the orienta-
tion of the specimen axis and viewing plane to vary. The quantities
necessary to specify these orientations are shown in figure 3 wherein

[1the (111) plane is the xy-plane and the Oil direction is the x-axis.

The orientation of the specimen axis is given by the spherical coordi-
nates X.,the angle between the specimen axis and the normal to the
slip plane, and ~, the angle between the slip direction and plane OAC
which passes through the specimen axis and is normal to the slip plane.
The orientation of the viewing plane (which is, of course, parallel to
the specimen axis) is given by m, the complement of the dihedral angle
between the viewing plane OAB and the aforementioned plane OAC. The
slip line produced by the intersection of the slip and viewing planes
and the slip sngle 8, the angle measured in the viewing plane between
the slip line and the normal to the specimen axis, are also shown in
figure 3. These quantities defining the orientation are exactly
equivalent to those used in reference 1.
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The value of u is in no way involved in answering the question ●

of whether a grain will slip; variation of u merely changes the slip
.-

angle produced and only the values of X and 3 need to be lmown to
answer this question. If the stereographic projection shown in figure 2 *
is rotated to bring the normal to the (111) plane into the center, the
projection in figure 4 is produced. In fi~e 4 only those parts of
the projection which will be useful are shown. As was previously
remarked, the only orientations of the grain that are considered are
those for which the slip system (111/0~1) is most highly loaded. The
triangular region-specifying orientations of the specimen axis (or
values of A and 13 as indicated in fig. k) for which this slip sys-
tem is most highly loaded is therefore shown. Thus, the restricting
condition is merely that only values of A “and 13 within this triangle
are to be considered. This limitation entirely takes into account the
multimode property of the face-centered cubic crystal and constitutes
the significant difference between multimode and single-mode crystals;
there would be no restriction of values of X and j3 for a single-
mode crystal.

—

The question of whether a grain wi~l slip can now be answered.
The resolved shear stress on the (111/011) slip system due to a tensile
stress a along the specimen axis is given by .*

T =ucosXsinXcos$ (2) ●

The locus of positions of the specimen axis for which T = TL, the limit
shear stress, is given by

or

(3)

where R is the stress ratio and is equal to & in which uL = %L.
aL

For a fixed value of R, equation (3) describes a closed curve such
as that shown in figure 4 which separates the sphere into two regions,
the one inside being where T > ~ and the one outside being where

—

T < TL. As R is ,increasedthe curve encotipassesan ever widening region

starting with a point at k =~, p = O for R = 1 and increasingto
*

.
b
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the whole region O<A <~, -~<~ <~

regions have been constructed by Von G&ler
ref. 4, p. 38) for a different orientation
the one contained herein.

For a grain to slip at a given stress

7

for R = m. Such curves and

and Sachs (see, for example>
of the basic triangle than

ratio the grain must be
oriented so–that the s~cimen axis falls in this region. In addition,
however, a restrictive condition ti that the spec~en ~is mUSt fall
within the spherical triangle. The specimen axis thus must be included
both in’this region and the spherical triangle. For smallvaluesof R
the curve for T = TL falls entirely within the triangle and the results

should be the ssme as those obtained in reference 1 because the restric-
tive condition is not involved. For large values of R the curve lies
entirely without the triangle and the exact value of the stress ratio
is uuhportant; the value of R is high enough to cause slip in all
the grains and the slip-angle distribution is frozen. At intermediate
values of R both the triangular boundary and the value of the stress
ratio are important.

Attention up to this point in the discussion has been directed
mainly to considering the variables L and j3. Variation of u),as
was pointed out, only changes the slip angle produced- The effect
of u is taken into account in the following manner. Define”the
indicial cumulative probability G(A,8) ss the probability of a sliPPed
grain, the orientation of which with respect to the spec~men ~~ is
given by A and 13,exhibiting a sliP ~gle less than ‘O (This indicial
cumulative probability is independent of 13,as willbe seen later.)
The equation for F(G) can then be obtained by superposition:

(4)

J!!sinhdkdlA

where the quantity sin L U d13 is an elemental area on the sphere
shown in figure 4, and the integrations in both the numerator and the
denominator are carried out over the area A which is included both
within the spherical triangle and the curve T = TL. The numerator

thus is effectively the sum of the indicial cumulative probabilities
for each position of the spec~en axis (Ljp) over all Positions ‘hich
produce slip, and the denominator is .effective~Ythe SUM of all Posi-
tions (hjP) which produce sliP.
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order to derive the expression for G(A,9), the relationship
the orientation of the slip system (given by (A,~,u.),))and 19
known. This relationship
the irregular tetrahedron

sin

can be obtained from fi&e 3 by
OABC and iS

~=tane

GE-r (5)

Note that the value of 13 does not enter ‘intothis relationsh~p-since
the slip angle produced by slip on a given system depends only on the
orientation of the slip plane and not on the direction of slip within
the plane. Because of the symmetry of this equation only values of u
between zero and Yt/2 need be considered in the calculation of G(X,6).
The quantity G(k,O) is by definition the-proportion of all values
of o in this range for which the slip angle is less than a given
value of 6. When k< 6, the slip angle produced will be less.than 6
for all values of m; when A > 19,the slip angle produced will be less
than e for all values of u between O and sin-l(tan @/tank). Thus,

Note that the indicial cumulative probability is independent of 13 as
a consequence of the fact that ~ does not appear in equation (5). Since
the limits on the 13-~ntegratiansin equation (4) are functions only of A,
the expression for m(e)

ii(e) =

can be written .

J
/2

W(X)G(X,O)sin A dk
o (7)

In this expression, the term w(x)
values of j3 at the end points of
is included in both the triangular
curve 7 = TL. The value of W(A)

W(A)sin A dh

is merely the difference between the
the small circle with radius L which
area and the region inside the
is zero for values of X for which.

there are no positions of the specimen axis within both of these regions.
The expression for the pro~ability density S(e) can be obtained by
taking the derivative of N(e) with respect to 6’
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.

.

.

s(e)Jo

J
Tc/2

W(k)sin L dk
o

where

9

(8)

.2 sec28—

J

(k > e)

‘ d~

In equations (7) and (8), the function W(k) can be interpreted as “
being a weighting function used in the superposition of the indicial
cumulative probability G(X,8) and the indicial probability density
K(x,e). In order to determine the end-point values of 13 for the
purpose of calculating W(k), use must be made of equation (3) as well
as the equations of the great circles bounding the triangul= area;
these equations are ol+ained in the appendix and the results are summa-
rized here. (Each great circle is denoted by the points through which
it passes.)

For great circle (001,101),

(lOa)

For great cticle (Ml,lil)j

(lOb)
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For great circle (101,111),
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.

P =-
:“”

(1OC) .

AS can be expected, for a ffied value of R) the ‘ahble ‘lnmWt
be separated into various ranges in the determination of W(k).
addition, the stress ratio itself must be separated into various ranges.
A discussion of each range of R and illustrative sketches follow: —

(1) Range 1: l< R<~_

001

/

1+V2

*

.

ITI

In this range the curve for T = TL falls entirely within the triangle;

the upper limit of this range is the value of R for which the
curve T =TL first touches the @eat circle (001,101). The values

of W(A) are

w(x) = o (o<x<x~) 1
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.
●

where the minimum and maximum values of 1. on the curve T = TL are

.

L1 ++

6
(2) Range II: — 5< R’< —

l+fi 2K

00 I

ITI

In this range and in subsequent ranges both the c~ve and the triangle
are involved. The upper limit of this range is the value of R for
which the curve intersects the great circle (OO1,1O1) at P = O. The
values of W(L) are

——
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.

w(x) = o

= 2 Cos-1 1
R Sin 2A

= 2 Cos-1 1
R sin 2X

= o

where the values of k at the intersections between the curve for
T = TL and the great circle (001,101) are

ITI

.

.

.-L.

.

●

9

●
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The upper ltiit of this range is the value of R for which the curve
first touches the great circle (001,1~1). The values of W(L) are

w(k) = o 1(O< L< AI)

= Cos-1 1 + Cos-l cot A m— -.
R sin 2X

@-6

(Al < A < A2)

I

(13)
= 2 Cos-1 1 (A2 < X < h2)

R sin 2X

001

ITI
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The maximum value of R in this range is that for_which the intersec-
tion between the curve and the great circle (001,111) occurs at ~ = O.
The values of W(X) are

w(x) = o

Cos-1 1+=
R Sill 2?u

= 2 COS-l 1
R sin 2X

Cos-1 1-=
R sin2k

= 2 Cos-1 1
R sin 2X

= o

cos-q@ cot A) + z
6

(O< X<A1)

(Al < L < A2)

1

(A2 < X.< B~)

\ (14)

(B~<h<B2)

where the values of A at the inte~sectionsbetween the curve for
T = TL and the great circle (001,111) are

B1,2 = ~COS-l

.

.

-.

9

.

*
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001

The upper limit of this
the curve first touches
are

w(h) = o

Cos-1 1+=
R sin 2A

= 2 cos-~ 1
R sin 2?..

= Cos-1 1
R sin 2L -

= o

ITI

range is given by the value of R for which
the great circle (101,111). The values of W(X)
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(6) Range VI:
?

~<R< p
I/3

,

001

—-
The maximum value of R
passes (stiultaneously)
values of W(X) are

w(x) = o

1+
= Cos -1

R Sill 2X

= &-1 cot h

fi

Cos-1 1+=
R Sill 2A

= 2 cos-~ L
R sin 2A

= Cos-1 1

R sin 2X -

= o

ITI

in this range is that for which the curve
through both the corners (001) and (101). The

.

u
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where the intersections between the curve for T = TL and the great
circle (Iol,lil) are

.1 2
Cl= *sin —

/33

-1 2
c2=; .&n —

fm

(7) Range VII:
E’R<$E

The upper limit of
passes through the

this range is
corner (lT1).

.

the value of R for which the curve
The values of W(A) are



.
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w(k) = ~

.~ cot ?b
= COB — r2

St Cos-1(K cot k)=--
3

= COB-1 ~— - Cos-1(E cot x) + ~

R Sin 2h

r

●

,

m

I
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.
In this last range the curve lies outside the triangle and the exact
value of R is unimportant; slip occurs in all grains and the slip-

. angle distribution is frozen. The values of W(A) are

-

w(k) = o
( 0
O<x<cos-1 ~

3

19

* The theoretical derivation is thus completed. By Using equations (11)
to (18) in conjunction with equations (6) and (9), the cumulative prob-
ability N(G) (eq. (7)) and the probability density S(e) (eq. (8))

. can be evaluated.

RESULTS AND COMPARISONS

In order to show the difference between the results_obtained
herein and those derived in reference 1 the curves for N(8) and S(8)
have been computed by both theories for three values of R and compared
in figures 5 to 7. In the calculation of these curves, the integrations
necessary for computing S(6) were carried out nmnerically. For
isolated cases, however, the integrals could be expressed in the form
of elliptic func~ions and these exact evaluations were used as a check.
The curves for N(e) were found by numerically integrating the curves
for S(e), S(0) being the derivative of ~(~) with respect to e.
As can be seen from figure 5 for whfch R = 1.015, there is no plottable
difference between the results for this value’of stress ratio. When
the stress ratio is increased to 1.156, the effect, as sho~~ h figwe 6,
increases appreciably. Even more effect is apparent in figure 7, for
which the stress ratio is 1.837. It should be noted that the value of
the stress ratio R = 1.837 is the one for which the slip-angle dis-
tribution derived in the present paper becomes frozen. For higher
values of the stress ratio the curves for the face-centered cubic dis-
tributions would be the same as those shown in figure 7, whereas the
curves derived on the basis of single-mode crystals would continue to
change.
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The manner in which the differences between the two theories exhibit .
themselves can be seen from figures 5 to 7. The values of S(6) for
the single-mode crystal remain almost constant for low values of 9 as
the stress ratio is changed; whereas the corresponding values for the .

face-centered cubic crystal decrease as R is increased (until R = 1.837,
of course). The value of slip angle where the probability density is
maximum continually decreases as the stress ratio is increased for the

.—

single-mode crystals; whereas the value for which the maxhuum is obtained
remains at about 45° for the face-centered cubic crystal. The value of
the maximm slip angle, denoted herein by %, for the face-centered
cubic crystal is always less than or equal to 6UX for the single-mode
crystal.

.

More detailed.considerationcan be given to this last point. It
was found in reference 1 that ~a is, for single-mode crysta~,
equal to X2: The value of ha as obtained herein is clearly given

by the maximum value of L for which W(k) is not zero. (See eqs. (8)
and (9).) Thus, for face-centered cubic cr~tals,

&=?+

= B2

()R<$

(w)
These results for 6ma are plotted against the stress ratio R in
figure 8. For comparison the corresponding results for the single-
mode theory are also shown.

In reference 1 an experimentally obtained slip-angle distribution
was shown. This distribution was taken from a photomicrograph of a
polished 2S-0 aluminum alloy specimen at 0.022 strain. At this strain,
the stress ratio was found’to be approximately 2 and, in addition,
the stress was high enough to cause slip in all the grains. The
experimental distribution is plotted in figure 9 along with the face- ..

centered-cubic frozen distribution and the singk-mode distribution
for R = 2.000 taken from reference 1. The comparison is somewhat

J.-

better between the experiment and the face-centered cubic theory than *

between the experiment and the single-mode theory. At the higher slip
angles, however, the agreement is still not very close. In particular,

<.
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. the maximm experimental slip angle of 580 is still far below that pre-
dieted by the face-centered cubic theory (70° 32t). It is a point.of
interest that the analysis of other photomicrographs of similar speci-

b mens strained in the same manner as the specimen from which this
experimental distribution was obtained has yielded no slip lines with
slip angles greater than 63°. Thus experience has shown that there is
an utter lack of slip angles between 63° and the theoretical 70° 32’
in polycrystals that have been strained in tension until all the grains
have slipped. It might be argued that the reason for this lack is due
to the small theoretical probability of a grain exhibiting a slip angle
between, say, 580 and 70°.32t (on the order of 0.05), but a simple
calculation shows that the probability of at least one of 123 grains
(which is the size of the sample from which the distribution shown in
fig. gwas obtained) exhibiti~g a slip angle between 58° and 70° 321 is

1- (1 - 0.05)123

or 0.998, ahnost a certainty. Some other reason must therefore exist
for the aforementioned lack. This reason is undoubtedly connected with
either the fact that surface grains do not act like interior ones or
the violation of one of the assumptions. With regard to this latter
point, the assmnption dealing with equality of microscopic and macro-
scopic stresses seems to be the most likely suspect, particularly since
it is generally agreed that the stress state in a polycrystaI varies
from grain to grain. (See, for example, ref. 7.)

CONCLUDING REMARKS

The tiferences between theoretical slip-angle distributions
derived on the basis of polycrystal aggregates made up of single-slip-
mode crystals and those made up of face-centered cubic crystals are
found to be appreciable, the difference increasing as the stress is
increased.

The face-centered cubic theory agrees somewhat better with experi-
ment than the single-mode theory, but the errors are still appreciable.
These errors are probably due *O the inadequacy of the assumption
involving the homogeneity of stress from grain to grain.

Langley Aeronautical Laboratory
National Advisory Cormnitteefor Aeronautics

Langley Field, Vs., June 20, 1952
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.

APPENDIX

EQUATIONS OF GREAT CIRCLES BOUNDING

.

THE TRIANGLE OF INTEREST

In order to obtain analytical results for W(h) the equations of
the great circles bounding the triangle shown in figure h must be known.
The approach that is used in this analysis-is to find first the general
equation of a great circle and then to fit the equation to the points
through which each bounding circle must pass.

In terms of the coordinates k,$ in figure 3, the direction
cosines of a given direction (or a given point on the sphere from
which the stereographic projection is obtained) with respect to the

x-3 Y-) and z-axes are

zXj ly~ L = sin L Cos p, sin X sin 13, Cos L (Al)

*

A great circle can be defined, in one way, as the locus of points
on the sphere that are 90° away from a fixed point called the pole of
the great circle. If the location of the pole of a great circle is

●

denoted by ho,~o with the direction cosines
-.

‘%’ ‘Ye? ‘Z()>‘k

points on the great circle must satisfy the equation

22x Xo +11
Y Y()

+11z Zo =0

or

or

fl=po+cos -l(-cot h Cotxo) (A2)

Equation (A2) is the general equation for a great circle. The R
equation has two unknown constants, 130 and cot Xo. These constants

can be determined from the coordinates of two points through which-the
great circle is known to pass. The corners of the spherical triangle v

shown in figure 4 furnish the necessary paints.
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corners can be found from the anzles
known points (111) and (Oil). S&ce the

Miller indices of the various directions are direction numbers referred
to a common set of axes, these angles can be easily determined. For
instance, the cosine of the angle between the (111) point and the
(101)point is

and the cosine
is given by

given by

($)(*)+(:)(o)+(*)(*)=1$
of the angle between the (0~1) point and

‘o)(w)(o)
Knowledge of these two angles allows
of the point (101). Thus

the (101) point

the determination of the coordinates

{
(sin Xcos f3)(0)+ (sin Xsin ~)(0) + (cos k)(l) = ~

(sin kcos ~)(l)+ (sin Asin ~)(0)+ (cos k)(0) =:

therefore,

and
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Similarly, the coordinates of the other two corners can be determined
to be

1for the corner (1~1)

p=;

and

} for the corner (001)

JP;=.-

In order that each bounding great circle pass through the required
points the arbitrary constants in equation (A2) must be such that the
resulting equations are:

For great circle (001,101),

For great circle (OO1,lT1),

For great circle (101,1T1),

.

e

(A3a)

(A3b)

(A3c) -

,
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Figure l.- Slip systems of the face-centered

001

Specimen
axis

/
Icm

=-- —-–

cubic C~Stil.

.—

Figure 2.- Stereographic projection for obtaining the most highly loaded
slip system for a known orientation. The numbers within each region
indicate the most highly loaded slip system.

u
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Specimen
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Figure 3.- Geometry of the planes, directions, and angles involved
in the analysis.
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Figure 4.- Stereographic prOj@Cti-On Of the curve T = TL superimposed

on the particular spherical triangle of interest.
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Figure 5.- Slip-angle distribution for stress ratio R = 1.015.
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Figure 6.- Slip-angle distribution forstress ratio R = 1.1%.
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Figure 7.- Slip-angle distribution for stress ratio R = 1.837.
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Figure 8.- Variation of maximum slip angle with stress ratio.
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